Abstract

Rechargeable lithium-metal batteries with a cell-level specific energy of >400 Wh kg-1 are highly desired for next-generation storage applications, yet the research has been retarded by poor electrolyte-electrode compatibility and rigorous safety concerns. We demonstrate that by simply formulating the composition of conventional electrolytes, a hybrid electrolyte was constructed to ensure high (electro)chemical and thermal stability with both the Li-metal anode and the nickel-rich layered oxide cathodes. By employing the new electrolyte, Li∥LiNi0.6 Co0.2 Mn0.2 O2 cells show favorable cycling and rate performance, and a 10 Ah Li∥LiNi0.8 Co0.1 Mn0.1 O2 pouch cell demonstrates a practical specific energy of >450 Wh kg-1 . Our findings shed light on reasonable design principles for electrolyte and electrode/electrolyte interfaces toward practical realization of high-energy rechargeable batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.