Abstract
This work elucidates several forms of reduced electron density gradient (RDG) to describe noncovalent interactions (NCIs). By interpreting the RDG as a local moment function, we systematically leveraged Weizacker's and Fermi's local moments. This resulted in high-fidelity RDG representations consistent with the NCI analysis. In addition, the RDG version derived from the Lagrangian kinetic energy density is conveniently normalized. These results suggest the nonexistence of a particular RDG formulation when performing NCI analysis. Thus, an in-depth examination of the theoretical foundations connecting the RDG function with the nature of noncovalent interactions is necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.