Abstract

In this paper, we consider a class of n-person noncooperative games, where the utility function of every player is given by a homogeneous polynomial defined by the payoff tensor of that player, which is a natural extension of the bimatrix game where the utility function of every player is given by a quadratic form defined by the payoff matrix of that player. We will call such a problem the multilinear game. We reformulate the multilinear game as a tensor complementarity problem, a generalization of the linear complementarity problem; and show that finding a Nash equilibrium point of the multilinear game is equivalent to finding a solution of the resulted tensor complementarity problem. Especially, we present an explicit relationship between the solutions of the multilinear game and the tensor complementarity problem, which builds a bridge between these two classes of problems. We also apply a smoothing-type algorithm to solve the resulted tensor complementarity problem and give some preliminary numerical results for solving the multilinear games.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.