Abstract
In the paper we derive two formulas representing solutions of Cauchy problem for two Schrodinger equations: one-dimensional momentum space equation with polynomial potential, and multidimensional position space equation with locally square integrable potential. The first equation is a constant coefficients particular case of an evolution equation with derivatives of arbitrary high order and variable coefficients that do not change over time, this general equation is solved in the paper. We construct a family of translation operators in the space of square integrable functions and then use methods of functional analysis based on Chernoff product formula to prove that this family approximates the solution-giving semigroup. This leads us to some formulas that express the solution for Cauchy problem in terms of initial condition and coefficients of the equations studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.