Abstract

This paper deals with Euler-type integrals and the closely related Lauricella function , which is a hypergeometric function of many complex variables. For new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of, including near hyperplanes of the form, . The continuation formulas and identities for found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space , including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.