Abstract

Formulae for determining elastic local buckling half-wavelengths of structural steel I-sections and box sections under compression, bending and combined loading are presented. Knowledge of local buckling half-wavelengths is useful for the direct definition of geometric imperfections in analytical and numerical models, as well as in a recently developed strain-based advanced analysis and design approach (Gardner et al., 2019a, 2019b). The underlying concept is that the cross-section local buckling response is bound by the theoretical behaviour of the isolated cross-section plates with simply-supported and fixed boundary conditions along their adjoined edges. At the isolated plate level, expressions for the half-wavelength buckling coefficient kLb, which defines the local buckling half-wavelength of a plate as a multiple of its width b, taking into account the effects of the boundary conditions and applied loading, have been developed based on the results of finite strip analysis. At the cross-sectional level, element interaction is accounted for through an interaction coefficient ζ that ranges between 0 and 1, corresponding to the upper (simply-supported) and lower (fixed) bound half-wavelength envelopes of the isolated cross-section plates. The predicted half-wavelengths have been compared against numerical values obtained from finite strip analyses performed on a range of standard European and American hot-rolled I-sections and square/rectangular hollow sections (SHS/RHS), as well as additional welded profiles. The proposed approach is shown to predict the cross-section local buckling half-wavelengths consistently to within 10% of the numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.