Abstract

Mercury pollution from coal-fired power plants has always been an environmental concern, and adsorption technology is an effective method for Hg0 removal. In this study, copper-iron binary metal sulfide modified activated carbon ([Formula: see text]) adsorbent was synthesized. The performance and mechanism of mercury removal were tested by adsorption experiments and characterization methods. The results showed that the mercury removal efficiency of [Formula: see text] under simulated flue gas (SFG) conditions at 150°C could reach 91%, which was higher than [Formula: see text] and [Formula: see text]. Compared with [Formula: see text], the introduction of Fe increased the proportion of [Formula: see text], which was usually linked to [Formula: see text], resulting in the generation of more [Formula: see text](CuISI) species. Meanwhile, the generation of active sulfur sites such as [Formula: see text] was generated, which had a facilitative effect on the oxidation of Hg0. Stable [Formula: see text] was the predominant product on the adsorbent surface. The 2% sulfur loadings had significantly improved the sulfur resistance of conventional AC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.