Abstract

In this paper, we present a new approach of B -spline curve fitting to a set of ordered points, which is motivated by an insight that properly selected points called dominant points can play an important role in producing better curve approximation. The proposed approach takes four main steps: parameterization, dominant point selection, knot placement, and least-squares minimization. The approach is substantially different from the conventional approaches in knot placement and dominant point selection. In the knot placement, the knots are determined by averaging the parameter values of the dominant points, which basically transforms B -spline curve fitting into the problem of dominant point selection. We describe the properties of the knot placement including the property of local modification useful for adaptive curve refinement. We also present an algorithm for dominant point selection based on the adaptive refinement paradigm. The approach adaptively refines a B -spline curve by selecting fewer dominant points at flat regions but more at complex regions. For the same number of control points, the proposed approach can generate a B -spline curve with less deviation than the conventional approaches. When adopted in error-bounded curve approximation, it can generate a B -spline curve with far fewer control points while satisfying the desired shape fidelity. Some experimental results demonstrate its usefulness and quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.