Abstract

We show L2-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed L1-Wasserstein contraction, or Lp-Wasserstein bounds for p>1 that were, however, not true contractions. We explain how showing a true L2-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding L2-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.