Abstract
This paper investigates the H∞ state estimation problem for a class of discrete-time memristive neural networks (DMNNs) with time-varying delays. For the sake of coping with the switched weight matrices, the DMNNs are recast into a tractable model by defining a series of state-dependent switched signals. Based on the tractable model, the robust analysis method and Lyapunov stability theory are developed to devise a sufficient condition which ensures the global asymptotical stability of the estimation error system with a prescribed H∞ performance. The desired state estimator gain matrix and optimal performance index can be accomplished via solving a convex optimization problem subject to several linear matrix inequalities (LMIs). Finally, one numerical example is presented to check the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.