Abstract
Generalized linear statistics are a unifying class that contains U-statistics, U-quantiles, L-statistics as well as trimmed and Winsorized U-statistics. For example, many commonly used estimators of scale fall into this class. GL-statistics have only been studied under independence; in this paper, we develop an asymptotic theory for GL-statistics of sequences which are strongly mixing or L1 near epoch dependent on an absolutely regular process. For this purpose, we prove an almost sure approximation of the empiricalU-process by a Gaussian process. With the help of a generalized Bahadur representation, it follows that such a strong invariance principle also holds for the empirical U-quantile process and consequently for GL-statistics. We obtain central limit theorems and laws of the iterated logarithm for U-processes, U-quantile processes and GL-statistics as straightforward corollaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.