Abstract
Active Ca 2 + transport in living cells necessitates controlled supply of metabolic energy. Direct coupling between sarco/endoplasmic reticulum (ER) Ca 2 + ATPases (SERCA) and intracellular energy-generation sites has been well established experimentally. On the basis of these experimental findings we propose a pump-driven model to investigate complex dynamic properties of a cell system. The model describes the pump process both by the Ca 2 + ATPase itself and by a suitable description of the glycolysis. The associated set of differential equations shows a rich behavior, the solutions ranging from simple periodic oscillations to complex patterns such as bursting and spiking. Recent experimental results on calcium oscillations in Xenopus laevis oocytes and on dynamic patterns of intracellular Ca 2 + concentrations in electrically non-excitable cells are well described by corresponding theoretical results derived within the proposed model. The simulation results are further compared to spontaneous [ Ca 2 + ] oscillations in primitive endodermal cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.