Abstract

This paper examines the H∞ performance problem of the edge agreement protocol for networks of agents operating on independent time scales, connected by weighted edges, and corrupted by exogenous disturbances. H∞-norm expressions and bounds are computed that are then used to derive new insights on network performance in terms of the effect of time scales and edge weights on disturbance rejection. We use our bounds to formulate a convex optimization problem for time scale and edge weight selection. Numerical examples are given to illustrate the applicability of the derived H∞-norm bound expressions, and the optimization paradigm is illustrated via a formation control example involving non-homogeneous agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.