Abstract
Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes p. Modulo prime powers pr such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called p-linear schemes. They are generalizations of finite p-automata. In this paper we construct such p-linear schemes and give upper bounds for the number of states which, for fixed r, do not depend on p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.