Abstract

Given a graph G and a function h from E(G) to N, the h-subdivision of G, denoted by G(h), is the graph obtained from G by replacing each edge uv in G with a path P:uxuv1xuv2…xuvn−1v, where n=h(uv). When h(e)=c is a constant for all e∈E(G), we use G(c) to replace G(h). For a given graph G, an L(p,q)-labeling of G is a function f from the vertex set V(G) to the set of all nonnegative integers such that f(u)−f(v)≥p if dG(u,v)=1, and f(u)−f(v)≥q if dG(u,v)=2. A k-L(p,q)-labeling is an L(p,q)-labeling such that no label is greater than k. The L(p,q)-labeling number of G, denoted by λp,q(G), is the smallest number k such that G has a k-L(p,q) -labeling. We study the L(p,q)-labeling numbers of subdivisions of graphs in this paper. We prove that λp,q(G(3))=p+(Δ−1)q when p≥2q and Δ>2pq, and show that λp,q(G(h))=p+(Δ−1)q when p≥2q and Δ≥3pq, where h is a function from E(G) to N so that h(e)≥3 for all e∈E(G).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call