Abstract

Strontium isotopic measurements were made on Late Proterozoic carbonates from West African Craton. Comparison of samples with acceptable trace element patterns with coeval data from southern Africa and with the published Australian results suggests that the 87 Sr 86 Sr ratio of the Late Proterozoic sea water evolved in the following manner about 0.7075 at 1000 ± 50 Ma, 0.7056 to 0.7074 at 900 ± 50 Ma, 0.7068 to 0.7091(0.7106) at 800 ± 50 Ma, 0.7074 to 0.7077 at 700 ± 50 Ma, and 0.7076 to 0.7089(0.7096) at 600 ± 50 Ma ago. The variations are comparable in magnitude and frequency to those described previously for the Phanerozoic. Strontium isotopic values in the radiogenic part of this range suggest that the continental river flux of Sr into Late Proterozoic oceans was of comparable isotopic composition to its present day counterpart (∼0.711). Consequently, the non-radiogenic 87 Sr 86 Sr value at ∼900 ± 50 Ma ago signifies a large flux of “mantle” strontium into the ocean at this time. Because the present time resolution is only about 75 ± 25Ma, additional sampling as well as better stratigraphie resolution and more definite selection criteria are required for construction of a more detailed Late Proterozoic sea water curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call