Abstract

A new methodology is developed for the calculation of g-functions for the simulation of geothermal bore fields in non-stationary conditions. The g-functions are able to represent the variations of fluid mass flow rate and reversible flow direction, and model the effect of these variations on the long-term ground temperature response. The thermal model is constructed by coupling an axially-discretized finite line source solution for the ground heat transfer, a thermal resistance circuit model for the interior of the boreholes, as well as connectivity relations between parallel- and series-connected boreholes. Simulation experiments show that the new g-functions are required for the accurate prediction of fluid temperatures in series-connected boreholes with variable mass flow rate and reversible flow direction. A simulation of a borehole thermal energy storage system of 144 boreholes over a period of 20 years shows a maximum absolute error of 0.65 °C. The new g-functions thus extend the simulation capabilities of g-functions to borehole thermal energy storage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call