Abstract

The purpose of this paper is to characterize and interrelate various degrees of stability and semipositivity for real square matrices having nonpositive off-diagonal entries. The major classes considered are the sets of diagonally stable, stable, and semipositive matrices, denoted respectively by A , L , and S . The conditions defining these classes are weakened, and the resulting classes are examined. Their relationship to the classes of real matrices P and P 0, whose off-diagonal entries are nonpositive and whose principal minors are respectively all positive and all nonnegative, is also included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.