Abstract
The principal objective of this article is a brief overview of the main parts of p-adic mathematics, which have already had valuable applications and may have a significant impact in the near future on the further development of some fields of theoretical and mathematical biology. In particular, we present the basics of ultrametrics, p-adic numbers and p-adic analysis, as well as insight into their applications for modeling some cognitive processes, genetic code and protein dynamics. We also argue that ultrametric concepts and p-adic mathematics are natural tools for the viable description of biological systems and phenomena with a hierarchical structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.