Abstract
Based on solutions of the Ornstein–Zernike equation (OZE) of Lennard–Jones potential for mean spherical approximation (MSA), we derive analytical formula for the compressibility assuming that the system is of low density, homogeneous, isotropic and composed of one component. Depending on this formula, we find the values of the bulk modulus and the compressibility of air at room temperature and the bulk modulus and the compressibility of Methane, Ethylene, Propylene and Propane at nine per ten of critical temperature of each hydrocarbon. Also, we find the speed of sound in the air at various temperatures, the speed of sound in each of Helium, Neon, Argon, Krypton, Xenon, Methane, Ethylene, Propylene, Propane, Hydrogen, Nitrogen, Fluorine, Chlorine, Oxygen, Nitrous oxide (laughing gas), Carbon dioxide, Nitric oxide, Carbon monoxide, Sulphur dioxide and dichlorodifluoromethane at room temperature. Besides, we find the speed of sound in Methane, Ethylene, Propylene and Propane at nine per ten of critical temperature of each hydrocarbons depending on the formula we find. We show that the simple formula we derive in this work is reliable and agrees with the results obtained from other studies and literatures. We believe it can be used for many systems which are in low densities and described by Lennard–Jones potential.
Highlights
The compressibility is one of the most important properties in thermodynamic of materials, and we can get it from experimental methods or from some theoretical methods
In this work we find analytical formula of the compressibility from the Ornstein–Zernike equation which is one of the basic equations used to study the physical properties of fluids because this equation enables us to find the physical properties of materials by
We can find a solution for the Ornstein– Zernike equation using a suitable interaction potential of the system, we need another equation between pair potential and the total correlation function or the direct correlation function which we get it from a number of possible approximations of the direct correlation function which are used in the theory of simple liquids or simple fluids such as Born Green Yvon approximation (BGYA), Hyper Netted Chain approximation (HNCA), Percus Yevick approximation (PYA) and mean spherical approximation (MSA)
Summary
The compressibility is one of the most important properties in thermodynamic of materials, and we can get it from experimental methods or from some theoretical methods. We calculated the compressibility and the bulk modulus of air from this study, i.e. Eq 7, at 298.16 K° and we inserted the results in Table 1 with the value of bulk modulus of air found in some literatures in addition to the Lenard–Jones potential’s parameters of air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.