Abstract
It is well known that for a quaternion algegra, the anisotropy of its norm form determines if the quaternion algebra is a division algebra. In case of biquaternio algebra, the anisotropy of the associated Albert form (as defined in [LLT]) determines if the biquaternion algebra is a division ring. In these situations, the norm forms and the Albert forms are quadratic forms over the center of the quaternion algebras; and they are strongly related to the algebraic structure of the algebras. As it turns out, there is a natural way to associate a tensor product of quaternion algebras with a form such that when the involution is orthogonal, the algebra is a Baer ordered *-field iff the associated form is anisotropic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.