Abstract
The computational capability to determine optimal core loading patterns (LPs) for boiling water reactors (BWRs) given a reference control rod program has been developed. The design and fidelity of the reference BWR core simulator are presented. The placement of feed and reload fuel is solved by an adaptive optimization by simulated annealing (OSA) objective algorithm. Objective functions available for BWR fuel management are maximization of end-of-cycle core reactivity, minimization of peak linear power density, maximization of critical power ratio, maximization of region average discharge burnup, and minimization of total reload cost. Constraints include thermal and fuel exposure related limits and cycle energy production, when appropriate. The results presented demonstrate the utility of OSA to improve LPs in this highly nonlinear and constrained search space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.