Abstract

BackgroundNon-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), carries a high risk of cirrhosis and hepatocellular carcinoma. With the increasing incidence of NASH, the accompanying medical burden is also increasing rapidly, so the development of safe and reliable drugs is urgent. Formononetin (FMNT) has a variety of pharmacological effects such as antioxidant and anti-inflammation, and plays a major role in regulating lipid metabolism, reducing hepatic steatosis and so on, but the mechanism for alleviating NASH is unclear. Materials and methodsWe firstly established a mouse model on NASH through methionine-choline deficient (MCD) diet to investigate the improvement of FMNT as well as the effects of fatty acid β oxidation and SIRT1/PGC-1α/PPARα pathway. Then, we explored the mechanisms of FMNT regulation in SIRT1/PGC-1α/PPARα pathway and fatty acid β oxidation based on genes silencing of SIRT1 and PGC1A. In addition, SIRT1 agonist (SRT1720) and inhibitor (EX527) were used to verify the mechanism of FMNT on improvement of NASH. ResultsOur study found that after FMNT intervention, activities of ALT and AST and TG level were improved, and liver function and hepatocellular steatosis on NASH mice were significantly improved. The detection of β oxidation related indicators showed that FMNT intervention up-regulated FAO capacity, level of carnitine, and the levels of ACADM and CPT1A. The detection of factors related to the SIRT1/PGC-1α/PPARα pathway showed that FMNT activated and promoted the expression of SIRT1/PGC-1α/PPARα pathway, including up-regulating the expression level of SIRT1, improving the activity of SIRT1, promoting the deacetylation of PGC-1α, and promoting the transcriptional activity of PPARα. Furthermore, after genes silencing of SIRT1 and PGC1A, we found that FMNT intervention could not alleviate NASH, including improvement of hepatocellular steatosis, enhancement of β oxidation, and regulation of SIRT1/PGC-1α/PPARα pathway. Afterwards, we used SRT1720 as a positive control, and the results indicated that FMNT and SRT1720 intervention had no significant difference on improving hepatocellular steatosis and promoting fatty acid β oxidation. Besides, we found that when EX527 intervention inhibited expression of SIRT1, the improvement of FMNT on NASH was weakened or even disappeared. ConclusionIn summary, our results demonstrated that FMNT intervention activated SIRT1/PGC-1α/PPARα pathway to promote fatty acid β oxidation and regulate lipid metabolism in liver, ultimately improved hepatocellular steatosis on NASH mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call