Abstract

Ischemic stroke, caused by diminished or interrupted cerebral blood flow, triggers the activation of microglial cells and subsequent inflammatory responses. Formononetin (FMN) has been observed to inhibit BV2 microglial cell activation and alleviate ensuing neuroinflammatory reactions. Despite extensive research, the precise underlying mechanism remains unclear. To investigate the neuroinflammatory response following FMN-mediated inhibition of BV2 microglial activation, we employed an in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model. BV2 microglial cells were categorized into four groups: control, FMN, OGD/R, and OGD/R+FMN. Cell viability was assessed using the CCK-8 assay, while flow cytometry assessed M1 and M2 cell populations within BV2 cells. Immunofluorescence was utilized to detect the expression levels of apoptosis-inducing factor (AIF), p53, Toll-like receptor 4 (TLR4), and NF-κB p65. Western blotting (WB) was conducted to quantify p65/p-p65, IκB-α/p-IκB-α, and TLR4 protein levels in each group. Additionally, ELISA was employed to measure IL-1β and TNF-α levels in cell supernatants from each group. The results revealed a significant increase in the proportion of iNOS/CD206-positive M1/M2 cells in the OGD/R group compared to the control group (p < 0.05). There was also a notable increase in nuclear translocation of NF-κB p65 and elevated expression of inflammatory factors IL-1β and TNF-α in cell supernatants. Moreover, levels of p-p65, p-IκB-α, and TLR4 proteins were significantly elevated in the OGD/R group (p < 0.05). However, the addition of FMN reversed these effects. Specifically, FMN administration notably attenuated cell death and inflammation in BV2 microglia induced by OGD/R through modulation of the TLR4/NF-κB signaling pathway.These findings suggest that FMN may serve as a potential therapeutic agent against neuroinflammation associated with ischemic stroke by targeting microglial activation pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.