Abstract

Resistive switching (RS) characteristics are investigated in fabricated Al-doped HfO2 metal–insulator–metal devices. It is proposed that oxygen vacancies in Al-doped HfO2 devices play a key role as electron trap centers, leading to the forming-free reversible bipolar resistance switching behavior. The conduction mechanism can be explained by electron trapping and detrapping from such oxygen vacancy-related traps in the Al-doped HfO2 films and is dominated by a trap-controlled space-charge-limited current (SCLC) mechanism. A large RS ratio (~106) and excellent retention characteristics are also observed at room temperature as well as at 85°C. Such devices have potential for application in nonvolatile random-access memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call