Abstract

ABSTRACT The behavior of self-organization of convective flows in a thin layer of liquid under point (local) heating is investigated experimentally. The interaction of thermocapillary and thermogravitational-free convection can lead both to self-organization of a cluster of micro-vortices in the form of hexagonal structures and to its partial disintegration. Correlation analysis of the velocity field shows that the characteristic convection scales change continuously over time. The largest size of the vortex flow corresponds to the layer diameter (20 mm); the integral convection scale (2.5 mm) characterizes the established interaction of vortex structures in a wide range of sizes; and the dimensions of hexagonal convective cells (80–100 µm) show the lower limit of the characteristic scale of vortex structures. The observed flow macrostructure is determined by the complex nonlinear interaction of vortices of the specified scales. The resulting value of the average integral convection scale can be effectively used to predict the convection velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.