Abstract

The multiaxial plastic deformation behavior of a cold rolled interstitial-free steel sheet with a thickness of 0.65 mm was measured using a servo-controlled multiaxial tube expansion testing machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the contours of plastic work in stress space up to an equivalent plastic strain of 0.289 along with the directions of plastic strain rates. The test material exhibited differential hardening (DWH). A material modeling method for reproducing the DWH in a finite element simulation has been developed. Hydraulic bulge forming simulation results based on the DWH model had a closer agreement with the experimental results than those calculated using the isotropic hardening models with selected yield functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call