Abstract

Zinc (Zn) has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility. In this work, rare earth neodymium (Nd) was introduced into a Zn-based alloy fabricated using a laser powder bed fusion (LPBF) process. Results showed that addition of Nd significantly improved the melt fluidity and reduced the evaporation of Zn, thereby achieving parts with a high densification rate of 98.71%. Significantly, the Nd alloying treatment effectively refined the grain size from 25.3 to 6.2 µm. NdZn5 eutectics precipitated and contributed to a second-phase strengthening effect. As a result, the tensile strength increased to (119.3±5.1) MPa and the Vickers hardness to (76.2±4.1). Moreover, the Zn-Nd alloy exhibited good anti-inflammatory activity, as the Nd ions released during degradation had a strong affinity with cell membrane phospholipids and consequently inhibited the release of inflammatory cytokines. It also presented favorable cytocompatibility, showing great potential as a bone repair material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.