Abstract
Honeycomb panel is widely used as flooring or wall material in various structure including buildings, aircraft, train and so on due to high stiffness and lightness at present. Honeycomb panel, however, has a disadvantage that adhesive used to glue honeycomb core and top plate may burn by fire. On the other hand truss core panel has equivalent stiffness as honeycomb panel and is expected to be an alternative to honeycomb panel as it is safer for fire. However, in general, difficulty exists to form truss core and forming techniques should be developed for practice use of truss core panel. In this paper, firstly theoretical forming limitation is discussed for tetrahedral truss core . Secondly single stage forming simulation of truss core panel using explicit FEM technique was performed for preliminary investigation to estimate formability and thickness distribution. Finally multi-stage forming simulation was presented and possibility to apply press forming for truss core panel production through the simulation. In addition some results of the simulation was compared with the experiment and good agreement of both results was shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.