Abstract
A better understanding of the microstructure, physicochemical properties, and sensing behavior of an electrode is critical in developing quick, high sensitivity, and robust electrochemical sensors. In this study, a single electrode was fabricated with self-prepared graphene ink through a drop-cast process followed with a subsequent annealing treatment. The graphene ink-based electrodes were characterized through AFM, contact angle, FTIR, impedance spectra, Raman, and SEM to understand annealing treatment effects. The dynamic response of the electrode to humidity, and vapors of ethanol, propanol, or acetone was measured using a four-point probe station in a closed chamber. The annealing treatment increased the conductivity of the electrode and improved its sensing performance by forming more and sharper protrusions on the electrode surface. These unique surface protrusions suggest that the annealed graphene ink-based electrodes hold great potential in developing high-performance electrochemical sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.