Abstract

Micro heat pipes (MHPs) with excellent heat transfer performance have been the ideal radiating components to meet increasingly higher requirements posed by high heat-flux products. Based on MHPs’ working principle, this study deduced capillary limit of a novel MHP with compound structure of sintered wick on grooved substrate, and probed into its forming mechanism: first, high-speed oil-filled spinning was applied to fabricating micro grooves, with optimal spinning and drawing speeds determined; then a mini-type vibration machine was used to help fill copper powders fast and uniformly, with appropriate sintering temperature and time fixed; the manufacturing method that integrates vacuum-pumping–cold-welding with secondary-degassing–cold-welding to increase vacuumizing efficiency. The results of experiments on its heat transfer performance show that the MHPs with sintered-wick-on-grooved-substrate structure fabricated through the proposed forming method can not only acquire much better heat transfer performance, but have advantages such as higher productivity and lower cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call