Abstract

Ag thin wires in the 1–2µm diameter range with lengths of up to ~680µm were fabricated in a metallic multilayer sample using stress migration. The sample, which was heated under atmospheric conditions, was a thin Ag film deposited on a Cu foil with an adhesion film of Ti and covered with a TiN passivation film. A compressive stress gradient, formed in the Ag film during the heating treatment, was the driving force for atomic diffusion. A tensile stress was produced in the TiN film, and brittle fracture occurred to cause cracks after the tensile stress exceeded the fracture strength of TiN. The cracks provided pathways for atomic discharge to generate long Ag thin wires. It was noted that a thick TiN passivation film was indispensable for wire formation. The long Ag thin wires may provide great potential applications as component materials in flexible transparent electrodes, integrated circuits and electromagnetic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.