Abstract

For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M–K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy, and predictions are shown based on four different anisotropic plasticity models, which have all been fitted to agree with the same set of experimental data. Situations where the tensile axis is along one of the orthotropic axes of the anisotropy are studied, as well as situations where the tensile axis is inclined to the orthotropic axes. Furthermore, the effect of allowing for nonzero shear strains outside the necking band is considered. In all analyses the rotation of the orthotropic axes is accounted for, and a few studies are used to evaluate the effect of assuming the development of a plastic spin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.