Abstract

The formation of continental crust via plate tectonics strongly influences the physical and chemical characteristics of Earth’s surface and may be the key to Earth’s long-term habitability. However, continental crust formation is difficult to observe directly and is even more difficult to trace through time. Nontraditional stable isotopes have yielded significant insights into this process, leading to a new view both of Earth’s earliest continental crust and of what controls modern crustal generation. The stable isotope systems of titanium (Ti), zirconium (Zr), molybdenum (Mo), and thallium (Tl) have proven invaluable. Processes such as fractional crystallization, partial melting, geodynamic setting of magma generation, and magma cooling histories are examples of processes illuminated by these isotope systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.