Abstract

BackgroundFormiminotransferase cyclodeaminase (FTCD) is a candidate tumor suppressor gene in hepatocellular carcinoma (HCC). However, the mechanism for reduced expression of FTCD and its functional role in HCC remains unclear. In this study, we explored the biological functions of FTCD in HCC.Material/MethodsThe expression and clinical correlation of FTCD in HCC tissue were analyzed using TCGA (The Cancer Genome Atlas) and a cohort of 60 HCC patients. The MEXPRESS platform was accessed to identify the methylation level in promoter region FTCD. CCK-8 assay and flow cytometry analysis were used to explore the proliferation, cell apoptosis proportion, and DNA damage in HCC cells with FTCD overexpression. Western blot analysis was performed to identify the downstream target of FTCD.ResultsFTCD is significantly downregulated in HCC tissues and cell lines. Low FTCD expression is correlated with a poor prognosis (P<0.001) and an aggressive tumor phenotype, including AFP levels (P=0.009), tumor size (P=0.013), vascular invasion (P=0.001), BCLC stage (P=0.024), and pTNM stage (P<0.001). Bioinformatics analysis indicated promoter hypermethylation can result in decreased expression of FTCD. FTCD overexpression suppressed cell proliferation by promoting DNA damage and inducing cell apoptosis in HCC cells. FTCD overexpression resulted in increased level of PTEN protein, but a decrease in PI3K, total Akt, and phosphorylated Akt protein in HCC cells, suggesting involvement of the PI3K/Akt pathway.ConclusionsFTCD acts as a tumor suppressor gene in HCC pathogenesis and progression and is a candidate prognostic marker and a possible therapeutic target for this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.