Abstract

Formic acid is electrochemically generated from carbon dioxide (CO2) on nanolayered lead (Pb) electrode. Stepwise potential deposition method is applied to prepare nanostructured Pb, composed of particles and platelets with hexagonal and cubic crystallinities. Their electrocatalytic activities in an electroreduction of CO2 are compared. We observed higher faradaic efficiencies of 94.1% on a cubic Pb surface than that of polycrystalline Pb smooth films (52.3%) at 278 K. Analyzing the mass changes of the electrodes by electrochemical quartz crystal microbalance, the mechanistic origin of CO2 reduction is studied, and the indirect reduction of CO2 via Had atoms might be more reasonable than the direct electron transfer of CO2 molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.