Abstract

The dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differential heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.