Abstract

The technology of through metallized holes to sources of high-power GaN/SiC high electron mobility transistors is studied. The dependences of the reactive ion etch rate of SiC in the inductively coupled plasma discharge on the pressure of the SF6/O2/Ar gas mixture (5–40 mTorr), the high-frequency power applied to the bottom electrode (200–300 W), the working gas flow ratio (5 : 1 : (0–10)), and the bottom electrode temperatures (5–50°C) are studied. Based on these dependences, the hole etching process on 76-mm-diameter SiC substrates 50 and 100 μm thick is developed. The process features smooth etched-surface morphology, a high rate (1 μm/min), and low high-frequency power deposited into the inductively coupled plasma discharge (1000 W). The developed process of hole etching in SiC substrates is characterized by the selectivity coefficient S = 12 and the anisotropy coefficient A = 13. Films based on NiB are recommended as masks for etching through holes into SiC substrates. The processes of through-hole metallization by the electrochemical deposition of Ni and Au layers are developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call