Abstract

AbstractSupermesityl selenium diimide [Se{N(C6H2tBu3‐2, 4, 6)}2; Se{N(mes*)}2] can be prepared in a good yield from the reaction of SeCl4 and (mes*)NHLi. The molecule adopts an unprecedented anti, anti‐conformation, as deduced by DFT calculations at PBE0/TZVP level of theory and supported by 77Se NMR spectroscopy and a crystal structure determination. An analogous reaction involving (C6H2Me3‐2, 4, 6)NHLi [(mes)NHLi] unexpectedly lead to the reduction of selenium and afforded the selenium diamide Se{NH(mes)}2 that was characterized by X‐ray crystallography and 77Se NMR spectroscopy. The Se‐N bonds of 1.847(3) and 1.852(3) Å show normal single bond lengths. The <NSeN bond angle of 109.9(1)° also indicates a tetrahedral AX2E2 bonding arrangement around selenium. Two N‐H···N hydrogen bonds link the Se{NH(mes)}2 molecule with two discrete (mes)NH2 molecules. In the solid state selenium diamide adopts the anti‐conformation, whereas in solution the presence of both syn‐ and anti‐isomers could be observed. PBE0/TZVP calculations of the shielding tensors of 28 different types of selenium‐containing molecules, for which the 77Se chemical shifts are unambiguously known, were carried out to assist the spectral assignment of Se{N(mes*)}2 and Se{NH(mes)}2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.