Abstract

A prodrug treosulfan (TREO) is being evaluated in clinical trials as a myeloablative agent before hematopoietic stem cell transplantation. The active derivatives of TREO, monoepoxide (EBDM), and diepoxide (DEB) are formed in a pH-dependent nonenzymatic reaction. The aim of the study was to investigate pharmacokinetics of the TREO epoxy transformers in a rabbit model and explain the causes of low plasma concentrations of EBDM and DEB observed in patients receiving high-dose TREO before hematopoietic stem cell transplantation. New Zealand white rabbits (n = 5 per cohort) received an intravenous infusion of TREO (group I), injection of DEB (group II), and injection of a solution containing EBDM (group III). When EBDM and DEB were administered to the rabbits, they underwent a very rapid elimination (half-life 0.069 and 0.046 h) associated with a high systemic clearance (10.0 and 14.0 L h−1 kg−1). After administration of TREO, the t1/2 of EBDM was statistically equal to the t1/2 of the prodrug (1.6 h). To conclude, after administration of TREO, its epoxy transformers demonstrate a formation-limited elimination. Then EBDM and DEB have the same elimination half-life as TREO, but the levels of EBDM and DEB in the body, including plasma, are much lower than TREO on account of their inherently high clearance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call