Abstract

In this work, we propose a reduced model with a dynamical critical gradient to study the formation, propagation, and conversion of the transport barriers. In contrast to the commonly adopted static critical gradient, an evolving critical gradient self-consistently softens the profile stiffness, so as to facilitate the generation of transport barriers. This is especially crucial to the internal transport barrier (ITB) formation. Numerically, we show that the inhomogeneity of turbulent and neoclassical diffusivities can induce the global wave front propagation of the transport barrier. When the heating power ramps quickly, the ITB propagates unidirectionally to the edge region and converts into an edge transport barrier. For slow power ramping, the propagating ITB will bifurcate into bidirectional wavefronts and finally convert into a steady double transport barrier state. Our model uncovers the vital role of a dynamical ‘profile-stiffness’ in depicting the global dynamics of the transport barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.