Abstract

Examining tumor heterogeneity is essential for selecting an appropriate anticancer treatment for an individual. This study aimed to distinguish low- and high-aggressive tumor cells by analyzing the formation patterns of spheroids. The droplet-based microfluidic system was employed for the formation of each spheroid from four different subtypes of breast tumor cells. Additionally, heterotypic spheroids with T lymphocytes and cancer-associated fibroblasts (CAFs) were produced, and distinctions between low- and high-aggressive tumor cells were explored through the analysis of formation patterns using circularity, convexity, and cell distributions. In both homotypic spheroids and heterotypic spheroids with T lymphocytes, spheroids formed from low-aggressive tumor cells exhibited high circularity and convexity. On the other hand, spheroids formed from high-aggressive tumor cells had relatively low circularity and convexity. In the case of heterotypic spheroids with CAFs, circularity and convexity did not exhibit clear differences between low- and high-aggressive tumor cells, but distinct variations were observed in cell distributions. CAFs and low-aggressive tumor cells were evenly distributed, whereas the CAFs were predominantly located in the inner layer, and high-aggressive tumor cells were primarily located in the outer layer. This finding can offer valuable insights into predicting the aggressiveness of unknown tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call