Abstract

The present work studies the influence of hydrodynamic conditions (from 0 to 5000 rpm) during Zn anodization process on the morphology, structure and photoelectrocatalytic behavior of ZnO nanostructures. For this purpose, analysis with Confocal Laser-Raman Spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM) and photoelectrochemical water splitting tests were performed. This investigation reveals that hydrodynamic conditions during anodization promoted the formation of ordered ZnO nanowires along the surface that greatly enhance its stability and increases the photocurrent density response for water splitting in a 159% at the 5000 rpm electrode rotation speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.