Abstract

Calcium carbonate (CaCO 3) formation was observed without surface modification of the organic template and in the absence of chemical additives such as macromolecules and divalent cations. Our innovative electrochemical approach that involves the use of an alternating current facilitated the crystallization of CaCO 3 polymorphs on a porous polymer membrane. A solution of calcium chloride (CaCl 2) and sodium carbonate (Na 2CO 3) was filled in a glass cell, and the porous membrane was interposed in the cell. A sine waveform of 10 Hz was applied to the platinum electrodes using a high-speed bipolar power supply. An alternating current was generated for 60 min. The crystal morphology and crystal structure of the resulting hybrid membrane were studied. In this electrochemical approach, versatile polymorphs of vaterite, aragonite, and calcite were formed on the membrane, thereby showing that the alternating current induced the formation of various polymorphs of CaCO 3 on the porous membrane even in the absence of any additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.