Abstract

In this work we have experimentally studied concentration effects on antisolvent precipitation of valine (an amino acid) from aqueous isopropanol solutions. Our experiments showed that the valine precipitation is very sensitive to both the supersaturation and to the water content in the final solution. Results from spectrophotometric measurements and supersaturation analysis showed that the crystal formation kinetics are strongly dependent on both mixing and concentration profiles in the early stages of the process, even though no visible change in the systems occurs immediately upon mixing with the antisolvent or subsequent dilution. Results from small‐angle static light scattering measurements showed that the first visible crystals are of micron size and they grow only little over time, while their number increases gradually. Taken together, these experiments point to intermediate phase separation of (possible amorphous) precursors, being either very small nanoparticles or droplets with their refractive index closely matching that of the continuous phase, which subsequently assemble into micron size valine crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.