Abstract
In this paper we construct unstable shocks in the context of 2D isentropic compressible Euler in azimuthal symmetry. More specifically, we construct initial data that when viewed in self-similar coordinates, converges asymptotically to the unstable $$C^{\frac{1}{5}}$$ self-similar solution to the Burgers’ equation. Moreover, we show the behavior is stable in $$C^8$$ modulo a two dimensional linear subspace. Under the azimuthal symmetry assumption, one cannot impose additional symmetry assumptions in order to isolate the corresponding manifold of initial data leading to stability: rather, we rely on modulation variable techniques in conjunction with a Newton scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.