Abstract

This work describes a unique and environmentally friendly approach for creating three-dimensional (3D) organic-inorganic flower shaped hybrid nanostructures called "nanoflower (NF)" by using Umbilicaria decussate (U. decussate) extract and copper ions (Cu2+ ). U. decussate species were collected from certain place in Antarctic and Turkey and extraction of each species were completed in methanol and water. The U. decussate extracts were used as organic components and Cu2+ acted as inorganic components for formation of U. decussate extracts based hybrid NFs. We rationally used these NFs as novel nanobiocatalyst and antimicrobial agents. These NFs exhibited peroxidase mimic, dye degradation and antimicrobial properties. The NFs were characterized with various techniques. For instance, the morphologies of the NFs were monitored by scanning electron microscope (SEM), presence of elements in the NFs were presented using Energy Dispersive X-Ray Analysis (EDX). Fourier-transform infrared spectroscopy (FT-IR) was used to elucidate corresponding bending and stretching of bonds in the NFs. The NFs acted as effective Fenton agents in the presence of hydrogen peroxide, and we demonstrated their peroxidase-like activity against guaiacol, dye degradation property towards malachite green and antimicrobial activity for Aeromonas hydrophila, Aeromonas sobria, Escherichia coli, Salmonella enterica and Staphylococcus aureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call