Abstract

Development of Si-based light emitter has been eagerly anticipated in Si photonics. However, its realization is difficult because group IV semiconductors such as Si and Ge are indirect-transition semiconductors. Si or Ge quantum dots (QDs) on Si substrates have drawn much attention as Si-based light emitting materials because their optical transition probability can be enhanced by their quantum confinement effect. There are some kinds of QDs fabricated by various methods: Stranski Krastanov (SK) QDs (Eaglesham & Cerullo, 1990; Schmidt & Eberl, 2000), Ge nanoparticles in SiO2 matrix (Maeda, 1995), Si QDs by anodic oxidation (porous Si) (Wolkin et al., 1999; Cullis & Canham, 1991), and so on. In terms of the crystal orientation control, SK QDs have intensively attracted much interest. In general, the density of SK QDs is approximately 1010-11 cm-2 and the size is about 50-100 nm. In order to get strong light emission and quantum confinement effect, the higher density and smaller size are required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call