Abstract

The low carbon steel of 0.22wt% carbon was tested to estimate the dynamic phase transformation behavior from austenite to ferrite. The samples were deformed at just above Ar3 temperature by hot torsion at condition of strain rate (0.5/sec) and strain (5.0). The flow curve obtained at just above Ar3 significantly differed from others due to dynamic transformation. Based on the analysis of flow stress curve and observation of micro-structure evolution, the initiation and finish points of strain induced dynamic transformation (SIDT) could be determined. An inflection point observed at early deformation range (0.2–0.3) from the work-hardening rate and stress plot meant that new ferrite grains were nucleated in austenite matrix and these nuclei could be also confirmed by optical microscope. Subsequently in strain range of 0.7-1.0, the flow stress had the maximum value and new fine ferrite grains were dynamically generated inside untransformed austenite grains as well as prior austenite grains. The dynamic phase transformation induced by deformation made eventually fine ferrite grains under 3 ㎛ and decreased stress level with a fixed gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call