Abstract

In order to study a formation mechanism of thin Ti-rich layers formed on the surfaces of Cu(Ti) wires after annealing at elevated temperatures, the 300-nm-thick Cu(Ti) alloy films with Ti concentration of 1.3 at.% or 2.9 at.% were prepared on the SiO2/Si substrates by a co-sputter deposition technique. The electrical resistivity and microstructural analysis of these alloy films were carried out before and after annealing at 400°C. The Ti-rich layers with thickness of ∼15 nm were observed to form uniformly both at the film surface and the substrate interfaces in the Cu(2.9at.%Ti) films after annealing (which we call the self-formation of the layers) using Rutherford backscattering spectrometry (RBS) and transmission electron microscopy (TEM). Both the resistivities and the microstructures of these Cu(Ti) films were found to depend strongly on the Ti concentrations. The resistivities of the films decreased upon annealing due to segregation of the supersaturated Ti solutes in the alloy films to both the top and bottom of the films. These Ti layers had excellent thermal stability and would be applicable to the self-formed diffusion barrier in Cu interconnects of highly integrated devices. The selection rules of the alloy elements for the barrier self-formation were proposed based on the present results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.